Downscaling of MODIS One Kilometer Evapotranspiration Using Landsat-8 Data and Machine Learning Approaches
نویسندگان
چکیده
This study presented a MODIS 8-day 1 km evapotranspiration (ET) downscaling method based on Landsat 8 data (30 m) and machine learning approaches. Eleven indicators including albedo, land surface temperature (LST), and vegetation indices (VIs) derived from Landsat 8 data were first upscaled to 1 km resolution. Machine learning algorithms including Support Vector Regression (SVR), Cubist, and Random Forest (RF) were used to model the relationship between the Landsat indicators and MODIS 8-day 1 km ET. The models were then used to predict 30 m ET based on Landsat 8 indicators. A total of thirty-two pairs of Landsat 8 images/MODIS ET data were evaluated at four study sites including two in United States and two in South Korea. Among the three models, RF produced the lowest error, with relative Root Mean Square Error (rRMSE) less than 20%. Vegetation greenness related indicators such as Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Soil Adjusted Vegetation Index (SAVI), and vegetation moisture related indicators such as Normalized Difference Infrared Index—Landsat 8 OLI band 7 (NDIIb7) and Normalized Difference Water Index (NDWI) were the five most important features used in RF model. Temperature-based indicators were less important than vegetation greenness and moisture-related indicators because LST could have considerable variation during each 8-day period. The predicted Landsat downscaled ET had good overall agreement with MODIS ET (average rRMSE = 22%) and showed a similar temporal trend as MODIS ET. Compared to the MODIS ET product, the downscaled product demonstrated more spatial details, and had better agreement with in situ ET observations (R2 = 0.56). However, we found that the accuracy of MODIS ET was the main control factor of the accuracy of the downscaled product. Improved coarse-resolution ET estimation would result in better finer-resolution estimation. This study proved the potential of using machine learning approaches for ET downscaling considering their effectiveness and ease of implementation. Future research includes development of the spatial-temporal fusion models of Landsat data and MODIS ET in order to increase temporal resolution of downscaled ET.
منابع مشابه
Downscaling 250-m MODIS Growing Season NDVI Based on Multiple-Date Landsat Images and Data Mining Approaches
The satellite-derived growing season time-integrated Normalized Difference Vegetation Index (GSN) has been used as a proxy for vegetation biomass productivity. The 250-m GSN data estimated from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors have been used for terrestrial ecosystem modeling and monitoring. High temporal resolution with a wide range of wavelengths make the MODI...
متن کاملScale influences on the remote estimation of evapotranspiration using multiple satellite sensors
There is considerable interest in using remote sensing to characterize the hydrologic behavior of the land surface on a routine basis. Information on moisture fluxes between the surface and lower atmosphere reveals linkages and land–atmosphere feedback mechanisms, aiding our understanding of energy and water balance cycles. Techniques that combine information on land and atmospheric properties ...
متن کاملDownscaling Surface Water Inundation from Coarse Data to Fine-Scale Resolution: Methodology and Accuracy Assessment
The availability of water surface inundation with high spatial resolution is of fundamental importance in several applications such as hydrology, meteorology and ecology. Medium spatial resolution sensors, like MODerate-resolution Imaging Spectroradiometer (MODIS), exhibit a significant potential to study inundation dynamics over large areas because of their high temporal resolution. However, t...
متن کاملEffect of Scaling Transfer between Evapotranspiration Maps Derived from LandSat 7 and MODIS Images
Remotely sensed images of the Earth’s surface provide information about the spatial distribution of evapotranspiration. Since the spatial resolution of evapotranspiration predictions depends on the sensor type; scaling transfer between images of different scales needs to be investigated. The objectives of this study are first to validate the consistency of SEBAL algorithms for satellite images ...
متن کاملEstimation of Actual Evapotranspiration along the Middle Rio Grande of New Mexico Using MODIS and Landsat Imagery with the METRIC Model
Estimation of actual evapotranspiration (ET) for the Middle Rio Grande valley in central New Mexico via the METRIC surface energy balance model using MODIS and Landsat imagery is described. MODIS images are a useful resource for estimating ET at large scales when high spatial resolution is not required. One advantage of MODIS satellites is that images having a view angle < ~15° are potentially ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016